Separating $p$-bases and transcendental extension fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Fields and Transcendental Numbers

Mohammad Zaki, MN State Univ, Mankato We define an algebraic number α as a root of an algebraic equation, a0∗x+a1∗x+· · ·+an−1∗x+an = 0 where ao, a1, · · · , an are rational integers, not all zero. We say α is an algebraic integer if a0 = 0. If an algebraic number α satisfies an algebraic equation of degree n with rational coefficients, and none of lower degree, then we say α is of degree n. If...

متن کامل

Graded Transcendental Extensions of Graded Fields

We study transcendency properties for graded field extension and give an application to valued field extensions. 1. Introduction. An important tool to study rings with valuation is the so-called associated graded ring construction: to a valuation ring R, we can associate a ring gr(R) graded by the valuation group. This ring is often easier to study, and one tries to lift properties back from gr...

متن کامل

Dickson Bases and Finite Fields

Finite fields have been used for many applications in electronic communications. In the case of extension fields, the nature of computation depends heavily on the choice of basis used to represent the extension over the base field. The most common choices of basis are polynomial bases although optimal normal bases or some variant of these have also been used despite the fact that such bases exi...

متن کامل

An Ideal Separating Extension of Affine Space

In affine space the set of solutions to a system of polynomial equations does not uniquely determine the system. We extend affine space so that the solutions (in the extension) to a system of equations uniquely determines the system. 1. Statement of the problem In particular, for field R let elements of R[x] = R[x1, ..., xn] act on the set of power series R[[T ]] = R[[T1, ..., Tn]] by way of th...

متن کامل

Gröbner Bases and Extension of Scalars

Let A be a Noetherian commutative ring with identity, let A[x] = A[x1, . . . , xn] be a polynomial ring over A, and let I ⊂ A[x] be an ideal. Geometrically, I defines a family of schemes over the base scheme Spec A; the fiber over each point p ∈ Spec A is a subscheme of the affine space Ak(p) = Spec k(p)[x], where k(p) = Ap/pp is the residue field of p. Let > be a total order on the monomials o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1972

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1972-0289465-9